Самостоятельные автомобили могут использовать лазеры, чтобы увидеть вокруг углов

Самостоятельные автомобили могут использовать лазеры, чтобы увидеть вокруг углов

Исследователи по всему миру прилагают усилия для разработки технологий машинного обучения, которые позволят вашему автомобилю распознавать объекты в реальном мире и управлять самим собой. Однако он может видеть только то, что прямо перед ним. Команда в Стэнфордском университете разработала систему, которая в один прекрасный день позволит вашему самоходному автомобилю увидеть вокруг углов, чтобы он мог принимать более ранние, разумные решения.

Технология, разработанная учеными Стэнфорда, основана на сверхбыстрых лазерных импульсах, что удобно. Все современные самонаводящиеся системы обзора автомобилей используют совместимые сканеры lidar, которые отображают мир вокруг автомобиля. В лабораторных испытаниях команда в Стэнфорде смогла использовать эти «пикосекундные» лазеры для сканирования объекта за экраном, не глядя прямо на него. Это не волшебство, а продукт отражений, световых сенсоров и мощный новый алгоритм распознавания объектов.

Представьте, что вы хотели увидеть за углом - вы, вероятно, используете зеркало. Свет отражается от зеркала, позволяя вам видеть, что находится на другой стороне стены. Стэнфордская система похожа, но вместо зеркала есть только стена. Собственно, несколько стен с разной степенью отражательной способности. Команда выпустила пикосекундный лазер на стене в течение семи или 70 минут. Фотоны от лазера отскочили от стены, а некоторые из них ударили по объекту за угол. В приведенном ниже примере это маленький манекен. Несколько из этих фотонов отскочили назад к стене, и еще меньшее число вернулось к датчику у источника. Из этого незначительного сигнала команда смогла восстановить то, что было скрыто за углом.

Поскольку мы говорим о таком небольшом количестве фотонов, команде необходимо было создать максимально возможный сигнал. Исследователи использовали один фотонный лавинный диод, или SPAD, для усиления сигнала от каждого фотона, который ударил детектор. Эти сигналы вместе с геометрией стены используются для создания 3D-вида объекта. Прошлые попытки одной и той же техники требовали огромного количества вычислительной мощности и времени, но размещение датчика и лазера в одном и том же месте значительно упростило алгоритм. Обработка данных занимает всего несколько секунд на ноутбуке.

Команда продолжает работать над этой системой, надеясь улучшить точность в реальных условиях с окружающим освещением. Скорость также является проблемой. Хотя алгоритм работает быстрее, для генерации изображения вам все равно потребуется не менее нескольких минут данных о возврате лазера. Это невозможно для автомобиля, который ускоряется по дороге. Увеличение интенсивности лазера могло бы помочь там, но вы не можете поднять его настолько высоко, что слепые люди. Даже без этих оптимизаций команда полагает, что она может использовать эту технологию для обнаружения отражающих объектов, таких как дорожные знаки. Таким образом, мы можем быть ближе к тому, чтобы видеть вокруг углов, чем вы думаете.

Читать далее

Что такое спекулятивное исполнение?

Спекулятивное исполнение было в новостях в последнее время, как правило, при обсуждении ошибок Meltdown и Spectre. Мы объясняем эту тему.

AMD снизила цены на процессор Ryzen, чтобы принять участие в кофе-озере Intel

AMD снижает цены на Ryzen в ответ на запуск Intel Coffee Lake. Если вы рассматриваете новый процессор AMD, это может быть время, чтобы купить его.

CES 2018 в фотографиях: что мы помним больше всего

CES всегда является подавляющей какофонией достопримечательностей и звуков, но несколько изображений всегда выделяются. Вот некоторые из наших фаворитов из шоу этого года.

Intel Leak подтверждает, что предстоящие SSD будут использовать Ultra-Dense QLC 3D NAND

Intel готовит новую линейку 3D-моделей TLC и QLC NAND. TLC 3D NAND не нова, но мы не ожидали увидеть тактику NAND с четырьмя уровнями довольно быстро.