«Implosion Fabrication» MIT сжимает объекты для создания наноразмерных версий
Чем меньше вы хотите чего-то быть, тем сложнее его построить. Это барьер, сдерживающий многие технологии от батарей до оптики, но новая технология, разработанная в MIT, может упростить производство наноразмерных материалов за счет сокращения крупных конструкций. В этом подходе используется тип абсорбирующего каркаса для создания трехмерных структур, в 1000 раз меньших, чем оригинал.
До настоящего времени методы создания крошечных трехмерных структур были мучительно медленными и ограниченными по сложности. Большинство из них включают использование 2D наноструктур, выгравированных на поверхности, и добавление последовательных слоев, пока вы не получите желаемую трехмерную форму. Это в основном очень медленная 3D-печать. Существуют некоторые методы для ускорения мелкомасштабной 3D-печати, но они работают только с определенными, например, специализированными полимерами, которые не подходят для многих приложений. Технология MIT уникальна, потому что она должна работать практически со всем - металлом, полимерами и даже ДНК.
Технология заимствована из устоявшейся техники визуализации, которая называется расширенной микроскопией; это просто работает наоборот. В расширенной микроскопии ткани помещают в гидрогель, а затем расширяют для получения изображений с высоким разрешением. Команда обнаружила, что они могут создавать крупномасштабные объекты в расширенных гидрогелях, а затем сокращать их до наноразмерных. Они называют это «изготовлением имплозии».
Процесс начинается с каркаса, состоящего из абсорбирующего материала, называемого полиакрилатом. Раствор молекул флуоресцеина может проникнуть в полиакрилат. Они действуют как указатели на эшафот (см. Ниже) при воздействии лазерного излучения. Это позволяет исследователям прикреплять молекулы в любой точке, которую они хотят. Молекулы могут быть чем угодно, например, золотыми наночастицами или квантовыми точками.
На данный момент все по-прежнему «велико» - в масштабе миллиметров, а не нанометров. Чтобы уменьшить конструкцию до желаемого размера, исследователи добавляют кислоту в раствор. Это устраняет отрицательные заряды в полиакрилатном геле, заставляя его сжиматься. Это увлекает молекулы вместе с ним, что приводит к уменьшению длины в 10 раз в каждом измерении, что приводит к общему снижению объема в 1000 раз.
Используя современные лабораторные методики, команда может взять объект объемом 1 кубический миллиметр с разрешением 50 нанометров. Для более крупных объектов размером около 1 кубического сантиметра они могут достигать разрешения 500 нанометров. Этот предел может прийти с дополнительными уточнениями. Команда ищет способы использовать эту технику для создания улучшенной оптики линз и наноразмерной робототехники.
Читать далее
Худшие процессоры из когда-либо созданных
Большую часть времени в wfoojjaec мы чествуем лучшие технологии. Сегодня мы приветствуем худшее.
Лучшие процессоры из когда-либо созданных
За последние 40 лет было разработано и построено множество микросхем, но лишь немногие заслуживают того, чтобы их называли лучшими из лучших. Мы округляем их по рабочим станциям, настольным компьютерам, ноутбукам и мобильным устройствам.
Плохое время для создания игрового ПК высокого класса
Мы не собираемся говорить, что это худшее время для создания высококлассного игрового ПК, но если вам нужно, чтобы вам повезло с некоторыми заказами, если вы хотите сделать это в этом году.
Главный архитектор Intel повторно нанимает Nehalem для создания нового высокопроизводительного процессора
Intel повторно наняла старшего научного сотрудника Гленна Хинтона для создания новой высокопроизводительной архитектуры ЦП. Назначение Гельсингера уже дает эффект.