AutoML Google создает модели машинного обучения без опыта программирования

Интерес к компьютерному обучению в последние годы взорвался, поскольку компании понимают, что у него есть приложения в области фотографии, самозанятых автомобилей, игр и т. Д. Мы пришли к выводу, что опытных программистов и ученых-данных не хватает опытных специалистов для создания этих систем. Решение Google - Cloud AutoML, система «точка-и-щелчок» для создания моделей обучения машинам без каких-либо навыков кодирования.
Google уже давно предлагает предварительно обученные нейронные сети, доступные через API, которые могут выполнять определенные задачи, но это полезно только в том случае, если вам нужно именно то, что делает эта модель. Суть Cloud AutoML заключается в том, что почти каждый может принести каталог изображений, импортировать теги для изображений и создать на основе этого функциональную модель машинного обучения. Google делает все тяжелые работы за кулисами, поэтому клиенту не нужно ничего знать о тонкостях проектирования нейронной сети.
AutoML не будет конкурировать с передовыми, сильно настроенными системами AI, которые мог бы построить опытный инженер, но у немногих предприятий есть деньги или ресурсы для поддержки разработки полностью настраиваемых моделей машинного обучения. AutoML использует простой графический интерфейс, позволяющий пользователю перетаскивать набор изображений. Затем платформа должна знать, как описывать эти изображения. Google делает свою магию, и вы получаете модель, работающую в облаке, которая может идентифицировать указанные термины на фотографиях. AutoML предоставляет статистику по силе модели, поэтому вы можете обучать ее большим количеством данных или тестировать с новыми изображениями.
Конечным результатом является модель машинного обучения, которая работает на серверах Google, доступная через API. Пользователи могут обратиться к этой модели с помощью API облака Google и получить прогнозы на новые изображения. Например, как Disney, так и Urban Outfitters протестировали AutoML, чтобы идентифицировать объекты в своих интернет-магазинах, чтобы пользователи могли искать и фильтровать больше терминов. Таким образом, вы можете искать «синий рюкзак» на Urban Outfitters и видеть все синие рюкзаки, даже если элементы не были помечены таким образом в системе.
Облачный AutoML Google в настоящее время ограничен изображениями, и это альфа. Вам нужно подать заявку на доступ к альфа-версии, и нет гарантии, что вы получите прямо сейчас. Визуальная часть AutoML - это лишь первая часть нескольких функций, запланированных для продукта. Google не упоминал о стоимости, но, вероятно, предприятиям придется заплатить за доступ API к моделям, которые они создают в AutoML.
Читать далее

Любопытство NASA Mars Rover Beams Вернуться потрясающий селфи
Блестящий новой настойчивой ровера NASA в последнее время крадет прожектор, но любопытство все еще на Марсе тоже. Этот стареющий робот все еще молодой, а достаточно бедро, чтобы взять Selfie - ад, любопытство пионерировало ревер Selfie.

Астрономы хотят создавать квантовые телескопы, которые охватывают глобус
Исследователи теперь обсуждают возможность разработки квантового телескопа в глобусе, смоделированном на успешном телескопе событий.

Ученые находят внеземные изотопы на дне океана
Анализ изотопов в океане CROST раскрывает радиоактивные материалы, которые могли бы только приехать сюда из-за пределов нашей солнечной системы, и их присутствие может помочь нам лучше понять физику катаклизных событий, таких как Supernovae.

Ученые обнаруживают изотопы на экзопланере впервые
Впервые ученые удалось обнаружить и проанализировать элементарные изотопы в атмосфере экзопланета. Команда говорит, что это может привести к новым и лучшим способам понимания планетарного формирования.