Новый материал эффективно генерирует водород из воды

Новый материал эффективно генерирует водород из воды

Использование водорода в качестве носителя для хранения топлива и энергии как заинтересованные ученые десятилетиями, но физика не на нашей стороне. Для создания водорода из воды требуется много энергии и дорогих материалов, но исследователи из Университета штата Вашингтон могут разработать метод, который мог бы сделать его жизнеспособным способом дешево и эффективно хранить энергию.

Многие из технологий, которые мы рассматриваем как часть возобновляемой энергии, менее согласованы, чем традиционные средства. Например, солнечная энергия производит много энергии в течение дня, а ночью нет. Это одна и та же история с ветроэнергетикой - она ​​может обеспечить больше энергии, чем нужно, когда она порывистая, но ни одного в спокойный день. Вам нужно каким-то образом сохранить избыточную энергию для последующего использования, а технология батареи имеет свои собственные сложности. Если вы можете генерировать водород, это чрезвычайно эффективный способ хранения энергии. Просто закачайте его в топливный элемент, и вы получите воду и энергию. В дополнение к промышленному хранению некоторые транспортные средства могут также питаться водородными топливными элементами.

Проблема с использованием водорода заключается в том, что вам нужно много энергии для разделения молекулы воды (наиболее распространенного источника атомов водорода), и требуемые катализаторы дороги. Большинство методов используют либо платину, либо рутений, и их необходимо часто заменять по мере их деградации. Как описано в недавно опубликованном исследовании, команда штата Вашингтон использовала дешевый и изобильный никель и железо для создания водоотталкивающего катализатора.

Новый материал эффективно генерирует водород из воды

Команда называет свой материал «пористым нанообъектом». Это немного напоминает металлическую губку с микроскопическими отверстиями и туннелями, которые придают ей очень большую общую площадь поверхности. Это ключ к его способности катализировать образование водорода и кислорода из воды. В ходе тестирования команда обнаружила, что этот материал еще более эффективен в производстве водорода, чем более дорогие катализаторы из драгоценных металлов. Что касается стабильности, команды сообщают, что она не уменьшала функциональность после 12-часового времени работы.

Большинство элементов этого процесса являются теми же, что мы в настоящее время используем для получения водорода, поэтому можно предположить, что нанофауны могут быть заменены на другие катализаторы в промышленном масштабе с небольшими изменениями. Тем не менее, исследование Университета штата Вашингтон изучило материал только в лабораторных условиях. Необходимо провести дополнительные исследования, чтобы увидеть, как наноподобный катализатор может работать в промышленном масштабе. До тех пор не бросайте свои литий-ионные батареи в мусор.

Читать далее

Новая серия AMD Radeon RX 6000 оптимизирована для борьбы с амперами
Новая серия AMD Radeon RX 6000 оптимизирована для борьбы с амперами

AMD представила серию RX 6000 сегодня. Впервые с момента покупки ATI в 2006 году использование графических процессоров AMD на платформах AMD даст определенные преимущества.

Новые детали Intel Rocket Lake: обратная совместимость, графика Xe, Cypress Cove
Новые детали Intel Rocket Lake: обратная совместимость, графика Xe, Cypress Cove

Intel опубликовала немного больше информации о Rocket Lake и его 10-нм процессоре, который был перенесен на 14-нм.

Хаббл исследует 16 "Психеи", астероид стоимостью 10 000 квадриллионов долларов
Хаббл исследует 16 "Психеи", астероид стоимостью 10 000 квадриллионов долларов

Исследователи только что завершили ультрафиолетовое обследование 16 Psyche, сверхценного астероида, который НАСА планирует посетить в 2026 году.

Обзор: новый DJI Mini 2 может стать идеальным дроном для путешествий
Обзор: новый DJI Mini 2 может стать идеальным дроном для путешествий

Если вы любите путешествовать со своим дроном, но ненавидите таскать с собой много оборудования, DJI Mini 2 может стать идеальным решением.