Инженеры используют ИИ, чтобы предсказать, как будут работать новые, неизвестные материалы

Инженеры используют ИИ, чтобы предсказать, как будут работать новые, неизвестные материалы

Технология материалов критически важна для современного мира, и мы почти никогда не задумываемся над этим. Понимание того, как твердые структуры ведут себя на наноразмерном уровне, имеет решающее значение для современных достижений во многих областях, включая полупроводники.

Исследователи, работающие в Массачусетском технологическом институте, а также в России и Сингапуре, используют ИИ, чтобы предсказать, как нагрузка повлияет на характеристики материала, и выяснить, какие виды деформации будут создавать какие эффекты. Некоторые из вас могут быть знакомы с термином «напряженный кремний», который относится к процессу растяжения слоя кремния над подложкой кремний-германий. Напряженный кремний, который был внедрен в современное микропроцессорное производство в эпоху P4, улучшает общую производительность процессора по сравнению с не натянутым кремнием. Но, как отмечает автор MIT, найти точную степень и тип используемого штамма чрезвычайно сложно.

Деформация может применяться любым из шести различных способов (в трех разных измерениях, каждое из которых может создавать деформацию внутрь-наружу или вбок), и с почти бесконечными градациями степени, поэтому исследовать весь спектр возможностей практически невозможно. просто методом проб и ошибок. «Он быстро возрастает до 100 миллионов вычислений, если мы хотим отобразить все пространство упругой деформации», - говорит Ли.

Страница Википедии о напряженном кремнии сама по себе косвенно указывает на сложность этих изменений. В нем отмечается, что, хотя первоначальная работа с напряженным кремнием приняла форму, которую я только что описал, последующие усовершенствования этой технологии включают дополнительные сложные этапы обработки. Поиск точных инструментов для дальнейшего улучшения общей производительности этих материалов, очевидно, является медленным, кропотливым процессом. Это также является частью того, почему время разработки новых функций и возможностей в производстве полупроводников (или, скажем, улучшения емкости батареи), как правило, так же долго и медленно, как и сейчас. Многие из улучшений, которые мы обсуждаем, когда говорим о батареях или усовершенствованных полупроводниковых технологиях, являются в основном усовершенствованиями материаловедения.

Напряженный кремний. Изображение из Википедии
Напряженный кремний. Изображение из Википедии

По словам исследовательской группы, их модель нейронной сети для прогнозирования напряжения была очень точной. Команда сосредоточилась на алмазе, у которого есть ряд положительных черт, которые сделали бы его превосходным полупроводником, если бы некоторые из его недостатков могли быть улучшены. Существует также потенциал для внесения более высоких количеств деформации в продукты, которые уже используют этот подход, что потенциально может трансформировать основной материал в процессе.

В то время как это исследование было сосредоточено конкретно на влиянии деформации на запрещенную зону материалов, «метод является обобщаемым» для других аспектов, которые влияют не только на электронные свойства, но и на другие свойства, такие как фотонное и магнитное поведение, говорит Ли. Из-за 1-процентной деформации, используемой в настоящее время в коммерческих чипах, многие новые приложения открываются теперь, когда эта команда показала, что деформации почти 10 процентов возможны без разрушения. «Когда нагрузка превышает 7%, материал действительно сильно меняется», - говорит он.

«Этот новый метод может потенциально привести к созданию беспрецедентных свойств материала», - говорит Ли. «Но потребуется много дальнейшей работы, чтобы выяснить, как наложить нагрузку и как масштабировать процесс, чтобы сделать это на 100 миллионов транзисторов на чипе [и гарантировать, что] ни один из них не сможет выйти из строя».

Самое интересное в таких подходах заключается в том, могут ли они масштабироваться до такой степени, что станут принципиально новыми подходами к тому, как мы проводим исследование материалов. Теоретически, исследовательский движок на основе ИИ мог пробиться сквозь материальные изменения, на проведение которых специализированной исследовательской группе потребовались бы недели или месяцы. Но обеспечение того, чтобы наши модели могли надлежащим образом предвидеть, как материалы будут деформироваться в различных условиях, является сложной задачей - набор данных для «обучения» ИИ может показаться огромным в лучшем случае.

Тем не менее, даже модель, которая могла бы сократить список идей для исследования от сотен миллионов до тысяч, была бы крупным прорывом. Может наступить момент, когда использование ресурсов ИИ, подобных этому, не ожидается, а стало функциональным требованием продолжения научного прогресса.

Читать далее

Новые детали Intel Rocket Lake: обратная совместимость, графика Xe, Cypress Cove
Новые детали Intel Rocket Lake: обратная совместимость, графика Xe, Cypress Cove

Intel опубликовала немного больше информации о Rocket Lake и его 10-нм процессоре, который был перенесен на 14-нм.

Intel представляет новые мобильные графические процессоры Xe Max для создателей контента начального уровня
Intel представляет новые мобильные графические процессоры Xe Max для создателей контента начального уровня

Intel выпустила новый потребительский мобильный графический процессор, но у него очень специфический вариант использования, по крайней мере, на данный момент.

Обзор: новый DJI Mini 2 может стать идеальным дроном для путешествий
Обзор: новый DJI Mini 2 может стать идеальным дроном для путешествий

Если вы любите путешествовать со своим дроном, но ненавидите таскать с собой много оборудования, DJI Mini 2 может стать идеальным решением.

ARMing for War: новый Cortex-A78C бросит вызов x86 на рынке ноутбуков
ARMing for War: новый Cortex-A78C бросит вызов x86 на рынке ноутбуков

ARM сделала еще один шаг на пути к самостоятельной конкуренции с x86, представив на этой неделе Cortex-A78C. Новый чип содержит до восьми «больших» ядер ЦП и до 8 МБ кэш-памяти третьего уровня.