MIT использует искусственный интеллект для создания Обновлены карты улиц от спутниковых снимков

Мы все были там - ваш GPS говорит, что, как предполагается, будет очередь идет вверх, и вы доверяете машине. Затем вы оказываетесь не в ту сторону или застрял на частной дороге негде развернуться. Получение точных карт до уровня улиц трудно, и даже технически точные карты может сбивать с толку, не достаточно подробно. Исследователи из Массачусетского технологического института и Научно-исследовательского института Qatar Computing (QCRI) объединили две нейронные архитектуры сети для получения более точных карт GPS с легкодоступными спутниковых изображений.
Это требует времени и денег, чтобы собрать точные картографические данные, и муниципалитеты по всему миру постоянно делают щипки их выработки. Только компании, имеющий доступ к горам пользовательских данных и флотам отображения транспортных средств есть надежда на обновление на регулярной основе, но даже Google не может сохранить свои данные на все части мира уточненного.
Одним из возможных решений является использование спутниковых изображений для получения точных карт улиц, но здания, деревья и путепроводов часто неясные важные детали, как подсчетов полосы движения и выходов. Новый документ из MIT и QCRI объясняет, как инструмент, называемый RoadTagger может предсказать расположение полос движения, даже когда они не видны.

Если бы вы были смотреть на спутниковом изображении с затемненной проезжей части, вероятно, можно предположить, сколько полос есть и какие из них вы должны были бы быть, чтобы взять конкретный выход. Обучение машины, чтобы сделать это с миллионами изображений является основной вычислительной задачей, однако. RoadTagger состоит из двух частей: сверточная нейронная сеть (CNN) часто используются для задач распознавания образов и граф нейронной сети (GNN), который понимает отношения между точками данных.
CNN RoadTagger сканирует исходные данные изображения и идентифицирует дороги. Затем GNN расщепляется каждую дорогу на сегменты 20 метров. Каждый сегмент становится «плиткой» в отдельном узле графа. CNN смотрит на каждом узле графа и собирает функцию, такие как тип дороги и подсчеты переулка. Он разделяет данные с соседними узлами, распространяющихся вдоль всей длины пути. Если плитка затемняются или неясные, то GNN может использовать данные CNN из других узлов для оценки условий в этом разделе.
Команда проверила RoadTagger с реальными изображениями из 20 городов США. RoadTagger удалось правильно идентифицировать скрытые локации LANE 77 процентов времени. Он также правильно угадали типы дорог 93 процентов времени. Версия будущее уже планируется, что будет стимулировать, что точность и добавить поддержку для определения функций, таких как автостоянки и велосипедных дорожек.
Читать далее

Худшие процессоры из когда-либо созданных
Большую часть времени в wfoojjaec мы чествуем лучшие технологии. Сегодня мы приветствуем худшее.

Лучшие процессоры из когда-либо созданных
За последние 40 лет было разработано и построено множество микросхем, но лишь немногие заслуживают того, чтобы их называли лучшими из лучших. Мы округляем их по рабочим станциям, настольным компьютерам, ноутбукам и мобильным устройствам.

Плохое время для создания игрового ПК высокого класса
Мы не собираемся говорить, что это худшее время для создания высококлассного игрового ПК, но если вам нужно, чтобы вам повезло с некоторыми заказами, если вы хотите сделать это в этом году.

Главный архитектор Intel повторно нанимает Nehalem для создания нового высокопроизводительного процессора
Intel повторно наняла старшего научного сотрудника Гленна Хинтона для создания новой высокопроизводительной архитектуры ЦП. Назначение Гельсингера уже дает эффект.