Дослідники використовують сверхзвуковую рідину для тестування чорних отворів Хокінга

Дослідники використовують сверхзвуковую рідину для тестування чорних отворів Хокінга

Відомий фізик Стівен Хокінг загинув минулого року, але його новаторська робота продовжується. Команда вчених з Ізраїлю вважає, що вони підтвердили одне з найвідоміших прогнозів покійного вченого. Використовуючи квантову надтекучу, дослідники, можливо, знайшли докази того, що так зване «випромінювання Хокінга» є реальним явищем чорних дір. Ефекти цієї роботи могли б змінити спосіб розуміння всесвіту і долі зірок.

Десятиліття тому новаторська теоретична робота Хокінга про чорні діри виклала численні прогнози. У минулі роки багато хто з них довели свою точність. Випромінювання Хокінга є однією з найцікавіших і найсміливіших у своїх гіпотезах чорної діри, але це було дуже важко перевірити дотепер.

На думку Хокінга, химерні реалії Всесвіту на квантовому рівні означають, що чорні діри не вічні. Вони “кровоточать” енергією через еони і в кінцевому підсумку випаровуються. Хокінг зазначив, що з квантової точки зору вакуум простору не є порожнім. Пари віртуальних частинок повинні блимати до існування для нескінченно малих шматочків часу перед повторним комбінуванням і знищенням. Але чорна діра може порушити цей процес.

Чорна діра має таку інтенсивну гравітацію, що навіть світло не може вийти з горизонту подій. Таким чином, ці віртуальні частинки також можуть бути втягнуті. Тому можна вважати, що в рідкісних випадках одна частинка з пари втягується в чорну діру, а інша втеча. У такому випадку чорна діра зазнає чисту втрату маси у вигляді цього випромінювання Хокінга.

Дослідники використовують сверхзвуковую рідину для тестування чорних отворів Хокінга

Оскільки «сигнал» від випромінювання Хокінга настільки крихітний, нам не вистачає технології для вимірювання його навколо справжньої чорної діри. Команда з Ізраїльського технологічного інституту (Technion) перетворилася на аналог чорної діри, що є дуже новою концепцією, яка вперше була продемонстрована в 2009 році. Замість того, щоб тягнути світло з інтенсивним гравітацією, аналог - це конденсат Бозе-Ейнштейна (BEC) ультра-холодні атоми рубідію, які рухаються швидше, ніж швидкість звуку. Таким чином, він створює "горизонт подій" для звуку.

В експерименті команда використовувала пари додаткових звукових хвиль для того, щоб стояти на віртуальних частинках. Одна з хвиль пройшла повз горизонтальний горизонт подій, а інша відійшла. Команда змогла виміряти випромінювання системи, підтвердивши, що її температуру визначають тільки швидкість звуку та його потік. Він випромінював безперервний спектр довжин хвиль, який відповідає теоріям Хокінга про поведінку чорної діри.

Це другий експеримент від Technion, який демонструє випромінювання Хокінга таким чином. Новий експеримент має набагато більш чутливі інструменти, додаючи більше підтримки теорії. Наступним кроком є ​​повторення експерименту для відстеження змін у BEC з часом. Одного разу ми навіть можемо застосувати уроки, вивчені справжніми чорними дірами.

Читати далі

Медіасервери Plex використовуються для посилення DDoS-атак
Медіасервери Plex використовуються для посилення DDoS-атак

Дослідники стверджують, що належним чином використаний сервер Plex може збільшити розмір DDoS-пакетів майже в п’ять разів, роблячи ці атаки набагато більшими. Зараз користувачі Plex не можуть багато з цим зробити.

Графічні процесори, що використовуються для видобутку криптографічних даних, можуть втратити продукти
Графічні процесори, що використовуються для видобутку криптографічних даних, можуть втратити продукти

Чи буде майнінг на графічному процесорі довгостроково знижувати його продуктивність? Виникли деякі докази, які свідчать про те, що це можливо, але існують проблеми з набором даних, які виключають твердий висновок.

IBM створює перший 2nm процесор у світі, використовуючи Nanošheets
IBM створює перший 2nm процесор у світі, використовуючи Nanošheets

IBM побудував перші 2nm вафлі в напівпровіднику, за кілька років до того, як очікується, що вузол потрапить у комерційні обсяги.

Вчені використовують лазери, щоб побачити всередині замкнутої кімнати
Вчені використовують лазери, щоб побачити всередині замкнутої кімнати

Технологія так званого не-видовища (або NLOS) є все більш поширеною областю вивчення у віці самостійних автомобілів, що призведе до того, що надзвичайно користь, щоб побачити, що навколо вигину. Тепер команда з лабораторії обчислювального зображення Стенфордської обчислювальної обчислюваної лабораторії взяла ідею на крок далі, шпигуючи на об'єкти всередині замкненої кімнати. Все, що їм потрібно, - це лазер і комірка.