RoboFly Is the First Wireless Insectoid Robot to Take Flight

RoboFly Is the First Wireless Insectoid Robot to Take Flight

Drones come in a variety of shapes and sizes, but very small flying robots are hard to make for a variety of reasons. Still, swarms of little, cheap robots could be ideal for tasks like environmental surveys or hunting down gas leaks. Power usage is a concern with tiny robots, but we’re one step closer today. A team of engineers from the University of Washington has developed the first insectoid robot that can take flight without a power cable. It doesn’t fly for long, but it’s a cool proof of concept.

Most drones use propellers because they’re efficient and afford excellent maneuverability. However, propellers lose effectiveness at a certain point as you miniaturize them. If you want an insect-sized flying robot, an insect-like style of flight might be the best option from a physics standpoint. Flapping wings use more energy, though, and batteries are too heavy for insect-sized robots to carry. What’s a determined engineer to do? Some past attempts used a hardline power source to prove that winged micro-drones were possible. The UW team decided to use lasers to get rid of the wires.

The aptly named RoboFly has a small photoelectric panel atop a long wire extending from the device’s main circuit board. The researchers need only shine a laser on the cell, and the robot has enough power to flap its wings. Diffuse lighting, even in bright outdoor conditions, would not be enough to power the robot with such a small panel. The laser delivers a total of seven volts to the robot, but that’s not enough to power flight, either. The team designed a circuit board with a boost converter that can increase the output to 240 volts for a short time to flap the wings.

Everything about the RobotFly is designed to be as light as possible — it weighs about as much as a toothpick. The entire “brain” and power system are packed onto a single flexible circuit board. It has a dedicated microcontroller to operate the wings by sending pulses down at the top of each flap.

The RoboFly can indeed take off and land, but it only works when the small photovoltaic panel is in the path of the laser. As you can see in the video, that only lasts for a split second. Shortly after it lifts off, the robot loses power and lands. The team hopes that future versions of the RoboFly will include an adjustable laser power system, allowing the robot to fly freely.

Continue reading

Apple Might Bring Wireless Charging to the Next iPad Pro
Apple Might Bring Wireless Charging to the Next iPad Pro

The next iPad Pro refresh could feature wireless charging and a glass back panel, says Bloomberg's Mark Gurman.

Google’s Project Taara Wirelessly Transmits 700TB Across a River in 20 Days
Google’s Project Taara Wirelessly Transmits 700TB Across a River in 20 Days

Google says it has used the Free Space Optical Communications (FSOC) links developed for Project Loon to beam hundreds of terabytes of data nearly five kilometers, no wires necessary.

Microsoft Surface Duo 2 Pops Up at FCC With 5G, NFC, and Wireless Charging
Microsoft Surface Duo 2 Pops Up at FCC With 5G, NFC, and Wireless Charging

Microsoft has a Surface hardware event on the agenda for Wednesday (September 22), but an FCC filing might have just spilled the beans. The document reveals some notable details on the alleged Surface Duo 2, a follow-up to Microsoft's first Android phone in 2020.

Apple Reportedly Working on Long Distance Wireless and Reverse Charging Tech
Apple Reportedly Working on Long Distance Wireless and Reverse Charging Tech

Apple never did deliver its AirPower charging pad, but it could offer up something even better in the future.