Astronomers Have Detected a Planet’s Radio Emissions 51 Light-Years Away

Astronomers Have Detected a Planet’s Radio Emissions 51 Light-Years Away

Astronomers have detected thousands of exoplanets, but there’s only so much we can know about them from light-years away. A new study from Cornell University could help shed light on the conditions of exoplanets by analyzing radio emissions connected to their magnetic fields. The researchers claim this marks the first time an exoplanet has been detected in the radio bands.

This project started with the study of Jupiter, which has a hugely powerful magnetic field. Several years ago, study lead author Jake Turner conducted an analysis of Jupiter’s magnetic field. In the new study, that data becomes the basis for hunting exoplanets. The team processed the Jupiter data to simulate the radio frequency signal from a distant gas giant.

The results became a template for similar planets that might be 40 to 100 light-years away from the observer. Using the Low Frequency Array (LOFAR), the team scanned several nearby solar systems that are known to host exoplanets. If the signals from one of these stars matched the template, that would indicate they’d found an exoplanet’s emissions in the radio spectrum.

It took more than 100 hours of observational time, but a star known as Tau Boötes 51 light-years distant exhibited exactly the kind of signal the researchers were hoping to find. Turner and his colleagues even used other radio telescopes to repeat the analysis, and the signal is still there. And that makes sense — Tau Boötes has one known exoplanet, a gas giant called Tau Boötes b that orbits very close to the star.

Astronomers Have Detected a Planet’s Radio Emissions 51 Light-Years Away

According to the researchers, the signal is understandably very weak. There were several other stars with radio pings that could have been planets, but the one in Tau Boötes was much more significant. The team is now calling on other researchers to confirm the findings — data on an exoplanet’s magnetic field could be invaluable, but it’s still possible the signal is coming from the star or some other local source rather than the planet.

The researchers say that the magnetic field of a planet can offer hints of composition and habitability. For example, Earth’s magnetic field is a product of the planet’s iron core, and the field helps deflect dangerous radiation that can harm living things and strip away a planet’s atmosphere. Mars’ lack of a magnetic field is believed to be one of the reasons it’s so inhospitable. After confirming and refining Turner’s results, astronomers might be able to learn about distant worlds by scanning for radio frequency emissions.

Continue reading

Astronomers Spot Earth-Sized Rogue Planet Wandering the Galaxy
Astronomers Spot Earth-Sized Rogue Planet Wandering the Galaxy

Astronomers have identified more than 4,000 exoplanets orbiting other stars but just a few "rogue planets" wandering the galaxy without a star to call home. A new study claims to have spotted one of these worlds, and it may be a small, rocky world like Earth.

Astronomers Might Finally Know the Source of Fast Radio Bursts
Astronomers Might Finally Know the Source of Fast Radio Bursts

A trio of new studies report on an FRB within our own galaxy. Because this one was so much closer than past signals, scientists were able to track it to a particular type of neutron star known as a magnetar.

Astronomers Spot Potentially Artificial Radio Signal From Nearby Star
Astronomers Spot Potentially Artificial Radio Signal From Nearby Star

We don't yet know what this signal is, but there's a (very) small chance it could have alien origins.

Harvard Astronomer Still Believes Interstellar Object Was Alien Technology
Harvard Astronomer Still Believes Interstellar Object Was Alien Technology

Scientists have classified 'Oumuamua variously as an asteroid or a comet, but Avi Loeb, the chair of Harvard's Department of Astronomy, believes it was really alien — a piece of alien technology we mistook for a naturally occurring space rock.