MIT Creates Zoomable Lens Without Any Moving Parts
The science of optics has revealed the scale and detail of the universe for centuries. With the right piece of glass, you can look at a distant galaxy or the wiggling flagella on a single bacteria. But lenses need to focus — they need to move. Engineers at MIT have developed a new type of “metalens” that can shift focus without any moving parts. This could change the way we build devices such as cameras and telescopes.
Currently, focusing a lens on objects requires the glass to move in some capacity, and that adds complication and bulk. That’s why, for example, high-zoom camera lenses have been so slow to come to smartphones — there’s just no room to add movable lens elements. It’s also why smartphones that do have optical zoom use multiple fixed lenses. For example, the new Samsung Galaxy S21 Ultra has 13, 26, 70, and 240mm lens equivalents in its giant camera array.
The metalens developed at MIT can focus on objects at multiple distances thanks to its tunable “phase-changing” material. When heated, the atomic structure of the material rearranges, allowing the lens to change the way in which it interacts with light. The design currently operates in infrared, but this is just a first step.
Readers of a certain age might have interacted with a similar phase-changing material on rewritable CDs and DVDs. This technology, now all but extinct, relies on a material called GST that contains germanium, antimony, and tellurium. When heated with laser pulses, GST can switch between transparent and opaque, allowing optical drives to write and delete data.
The metalens has a similar material called GSST — it’s the same stuff with the addition of selenium. This new material has a more ordered, crystalline structure that is just 1 micrometer thick. It’s etched onto various microscopic structures (see above), all of which refract light differently. The researchers call this a “metasurface.” At room temperature, the lens focuses on a nearby target. When heated, the optical properties of the metasurface change, and it focuses on a more distant target.
So, that’s a dynamic lens without any moving parts. It’s just a proof of concept right now, but it’s a very cool concept. The team believes that tunable metalens technology could eventually lead to more compact and reliable telescopes, microscopes, and yes, better smartphone cameras.
Continue reading
NASA’s OSIRIS-REx Asteroid Sample Is Leaking into Space
NASA reports the probe grabbed so much regolith from the asteroid that it's leaking out of the collector. The team is now working to determine how best to keep the precious cargo from escaping.
AMD’s New Radeon RX 6000 Series Is Optimized to Battle Ampere
AMD unveiled its RX 6000 series today. For the first time since it bought ATI in 2006, there will be some specific advantages to running AMD GPUs in AMD platforms.
NASA Created a Collection of Spooky Space Sounds for Halloween
NASA's latest data release turns signals from beyond Earth into spooky sounds that are sure to send a chill up your spine.
NASA Discovers Vital Organic Molecule on Titan
In the latest analysis, researchers from NASA have identified an important, highly reactive organic molecule in Titan's atmosphere. Its presence suggests the moon could support chemical processes that we usually associate with life.