New Study Predicts Teeny Tiny Mountains on Neutron Stars

New Study Predicts Teeny Tiny Mountains on Neutron Stars

Physicists are still arguing over whether black holes have “hair,” but we’re pretty sure neutron stars have mountains. These dead stars are extreme in every respect, from their magnetic field to gravitational influence, but the only thing extreme about the mountains is how small they are. A new analysis of neutron star physics predicts the “mountains” on the surface are less than a millimeter tall.

A neutron star is what’s left of a medium-large star (10-25 solar masses) after it exhausts its nuclear fuel and explodes in a supernova. Stars that are a bit larger can collapse into black holes after expiring, and smaller ones like the sun will become white dwarfs. That means neutron stars are the densest objects known aside from black holes. They’re more massive than the sun even after blowing their top but are only a few miles in diameter. A spoonful of neutron star matter would weigh billions of tons.

Neutron stars are compressed into an almost perfect sphere by their incredible gravitational pull — “almost” is the keyword here. In the past, scientists have estimated that mountains rising up on the surface of a neutron star could be up to a centimeter tall. However, that assumption relies on an understanding of neutron star structure that is not born out by the new research, which was conducted at the University of Southampton by Ph.D. student Fabian Gittins.

New Study Predicts Teeny Tiny Mountains on Neutron Stars

The researchers devised a new model that allowed them to subject a realistic virtual neutron star to various forces. It all comes down to how the star’s layers behave — something we cannot know for sure until we see a neutron star up close. However, this work may get us closer to the truth. The previous estimates of centimeter-scale mountains relied on the assumption that the elastic crust of a neutron star was near the breaking point across the entire surface. Instead, the new model predicts that breaks in the crust will cover a larger surface area at a lower altitude. Thus, mountains that are only a fraction of a millimeter tall.

The extreme physics at work inside a neutron star are still unclear, but this work could get us closer to the truth. It’s possible scientists will be able to measure these mountains in the future. Theoretically, deformations in the surface of a spinning neutron star should be visible in gravitational waves. However, we have yet to see waves from a single neutron star. So far, we can only detect cataclysmic events like two neutron stars colliding. As more sensitive detectors come online, we might be able to size up the mountains in real life.

Continue reading

Intel’s Desktop TDPs No Longer Useful to Predict CPU Power Consumption
Intel’s Desktop TDPs No Longer Useful to Predict CPU Power Consumption

Intel's higher-end desktop CPU TDPs no longer communicate anything useful about the CPUs power consumption under load.

Analysts Predict Rapid DDR5 Adoption by 2023
Analysts Predict Rapid DDR5 Adoption by 2023

Analysts are predicting a fast ramp for DDR5 when it debuts late this year — much faster than the DDR3-to-DDR4 transition.

Predictive Policing Software Shown to Entrench Bias, not Address It
Predictive Policing Software Shown to Entrench Bias, not Address It

A new analysis by Gizmodo has concluded that such software disproportionately targets poor communities and communities of color.

New AI Helps Predict When NAS HDDs are About to Bite the Dust
New AI Helps Predict When NAS HDDs are About to Bite the Dust

NAS manufacturer QNAP has come up with a clever way to predict HDD failure: train an AI to do it.