New Transparent Solar Cells Could Help Scientists Create Energy-Generating Windows

New Transparent Solar Cells Could Help Scientists Create Energy-Generating Windows

In a paper published this week in the journal Nature, researchers from Switzerland’s École Polytechnique Fédérale de Lausanne detail the way in which they helped DSCs harvest energy from the full visible light spectrum. DSCs, a type of low-cost, thin film solar cell, use photosensitized dye attached to the surface of a wide band gap semiconductor to convert visible light into energy. Despite their financial and physical practicality, they’re not as efficient as conventional solar cells, which delegates both light absorption and energy generation to the semiconductor. This means that even though energy-generating windows have technically been possible for a while, the devices wouldn’t have been worth the resources.

This new efficiency record could change that. The team in Switzerland enhanced DSCs’ efficiency by meticulously controlling the assembly of dye molecules on the cells’ nanocrystalline mesoporous titanium dioxide (TiO2) films. Pre-adsorbing a single layer of hydroxamic acid derivative on the film’s surface allowed the scientists to improve the molecular packing and performance of two custom-designed sensitizers. These sensitizers were found to be capable of harvesting light from the entire visible spectrum.

New Transparent Solar Cells Could Help Scientists Create Energy-Generating Windows

During a simulation of standard air mass 1.5 sunlight—the air mass coefficient typically used to measure solar cells’ performance—the enhanced DSCs achieved a power conversion efficiency (PCE) of 15.2 percent. Considering the fact that 12.3 percent was the best-known DSC PCE in 2019, that figure is impressive, especially when you factor in that the enhanced cells maintained operational stability over 500 hours of testing. Better yet, when the scientists tested their enhanced DSCs on devices with a larger active surface area, they achieved a groundbreaking PCE range of 28.4 to 30.2 percent.

The team believes the enhanced DSCs could pave the way for energy-generating windows, skylights, and greenhouses in the near future. They could even find a place in low-power electronic devices, which would then use ambient light as an energy source.

Continue reading

Microsoft: Pluton Chip Will Bring Xbox-Like Security to Windows PCs
Microsoft: Pluton Chip Will Bring Xbox-Like Security to Windows PCs

Intel, AMD, and Qualcomm are working to make Pluton part of their upcoming designs, which should make PCs more difficult to hack, but it also bakes Microsoft technology into your hardware.

Apple: ‘It’s Up to Microsoft’ to Get Windows Running on New ARM Macs
Apple: ‘It’s Up to Microsoft’ to Get Windows Running on New ARM Macs

According to Apple, the question of supporting Windows on the M1 is entirely in Microsoft's court.

How Does Windows Use Multiple CPU Cores?
How Does Windows Use Multiple CPU Cores?

We take multi-core awareness for granted these days, but how do the CPU and operating system communicate with each other in the first place?

Minecraft With Ray Tracing Now Available for All Windows 10 Players
Minecraft With Ray Tracing Now Available for All Windows 10 Players

You don't usually think of Minecraft as a realistic game, but the developers have been hard at work adding RTX ray tracing to the game for the last eight months. It's finally out of beta today, and it really works with the blocky look of Minecraft.