Spine-like Battery Could Power Flexible Electronics

Spine-like Battery Could Power Flexible Electronics

Most devices can make do with a solid brick-like battery, but what about wearables and the supposed flexible phones we’ve been promised? A new kind of battery could improve the design and reliability of such devices, but making a flexible design that doesn’t degrade or fail catastrophically is a challenge. Researchers from Columbia University have developed a prototype for a flexible battery based on the shape of the human spine, and it has properties similar to non-flexible batteries.

The internal structure of a battery is vital not only to its capacity, but also to its reliability and safety. As we learned from Samsung’s Galaxy Note 7 battery issues, even small defects in the insulation between layers can cause a battery to fail catastrophically. The Columbia team got around the main safety concerns by building the battery with flexible segments akin to our own spinal discs and ligaments.

The energy storage components of the battery consist of lithium cobaltate cathodes and graphite anodes. An insulator layer runs between them, along with a copper and aluminum current collector. The entire apparatus is attached to a polyethylene supporting film. The energy storing segments are wound around the backbone substrate to give the battery its final flexible shape.

As for capacity, the flexible battery has an energy density of 242Wh/L, which is 86.1 percent of a standard non-flexible battery. The design tested in the video below has a total capacity of 123.53mAh and a mass of 4.86g. A smartwatch like the one tested there would probably need about twice as much juice to be usable for consumers, but the body could be vastly slimmed down if there was a flexible battery in the band. The Huawei Watch in the video has a 300mAh battery, but it’s a whopping 11.3mm thick.

The team found this battery design to be highly durable thanks to the flexible interconnects between cells. There was no structural damage even after 10,000 bends or 1,000 90-degree twists. After 100 charge cycles, the battery retained 94 percent of its capacity, which is close to what you’d expect from a traditional brick-like battery. Rechargeable batteries always lose capacity after repeated charge-discharge cycles.

This prototype is still a long way from a commercial product, but the testing seems surprisingly extensive. The capacity of the initial prototype is a bit low for a smartwatch, but it’s probably already sufficient for low-power fitness trackers, transdermal patches, or smart clothing. Larger versions could be viable in flexible phones or tablets.

Continue reading

Intel’s Desktop TDPs No Longer Useful to Predict CPU Power Consumption
Intel’s Desktop TDPs No Longer Useful to Predict CPU Power Consumption

Intel's higher-end desktop CPU TDPs no longer communicate anything useful about the CPUs power consumption under load.

Intel Launches AMD Radeon-Powered CPUs
Intel Launches AMD Radeon-Powered CPUs

Intel's new Radeon+Kaby Lake hybrid CPUs are headed for store shelves. Here's how the SKUs break down and what you need to know.

EKWB Launches Peltier Cooler Powered by Intel Cryo Cooling Technology
EKWB Launches Peltier Cooler Powered by Intel Cryo Cooling Technology

Intel and EKWB have jointly announced a new waterblock that integrates a Peltier cooler.

Qualcomm’s New Snapdragon 888 Will Power Flagship Android Phones in 2021
Qualcomm’s New Snapdragon 888 Will Power Flagship Android Phones in 2021

The 888 comes with a new CPU design, integrated 5G, and a massive GPU boost. It's shaping up to be the most significant update to Qualcomm's flagship system-on-a-chip (SoC) in years.