Happy 10th Birthday to the Kepler Space Telescope

Happy 10th Birthday to the Kepler Space Telescope

On March 7, 2009, the Kepler Space Telescope took off from Cape Canaveral aboard a Delta II rocket. For almost a decade, the space telescope expanded our understanding of the universe before it finally went dark for good last October. But it’s worth revisiting the spacecraft one last time, on its 10th anniversary.

Of the major launches and long-term missions in my own lifetime, Kepler’s achievements are unparalleled, in my own opinion. This is not to downplay the tremendous long-term mission of the Hubble Space Telescope, the earlier Galileo and Voyager missions, Cassini, Juno, or New Horizons. Each of these probes transformed our knowledge of our own solar system or the larger cosmos. But Kepler provided knowledge of literally thousands of planets we hadn’t detected before, in a staggering variety of shapes, sizes, and other variations.

Prior to Kepler’s launch, there were some 340 confirmed exoplanets. Today, we know of ~3,800, ~2,700 of which were Kepler contributions. There are still scientists today sorting through the data the probe sent back, checking candidates and confirming orbits with follow-up observations. In fact, the very first candidate Kepler ever detected was finally confirmed to be an exoplanet this week.

Happy 10th Birthday to the Kepler Space Telescope

Kepler’s raw performance was better than any Earth telescope, but didn’t quite meet target design goals due to higher-than-expected noise levels from stars themselves. As a result, Kepler had to observe more transits of potential planets in order to confirm a target. The telescope worked by monitoring specific stars for the minute drop in brightness it could measure when a planet passed in front of them. Imagine trying to calculate the drop in room brightness when a fly passes between you and the room’s light bulb and you’ve got an idea of just how difficult a task this was.

Because larger planets cover more of their stars during transit, Kepler’s planetary detections tended to run to the large end of the scale. Future telescopes, like the already-operational TESS (Transiting Exoplanet Survey Satellite) should have better luck with smaller rocky planets, closer to their host stars.

Kepler launches in 2009. Image credit: NASA
Kepler launches in 2009. Image credit: NASA

Kepler’s explicit scientific goals were to characterize and categorize the types of planets that form around stars; discover whether Earth-like planets were present; if those planets orbited in the habitable zone of their host stars; discover additional facts about the size, location, mass, and speed of the already-known “Hot Jupiters;” and to determine the general properties of stars that have planets in the first place as opposed to those that don’t.

While Kepler’s mission has been taken over by the more effective and powerful TESS (which is itself intended to act as a spotter for further investigations by the James Webb Space Telescope, in certain instances), Kepler’s nearly decade-long mission gave us the first evidence that rocky worlds weren’t just theoretically likely to exist based on the logical projections of astronomers, but that they factually existed in significant numbers.

The best coda I can think of for the Kepler Space Telescope is this: The work it did will continue. TESS is expected to find 20,000 exoplanets, nearly an order of magnitude more than Kepler ever did. If the James Webb Space Telescope launches successfully, it will offer another. But either way, the vital work that Kepler did is already going to continue, pushing back the frontiers of human understanding in the process.

Continue reading

IBM Plans to Reassign 31,000 Workers, Will Cut 10,000 Positions in 2018

IBM is firing over 10,000 workers and reassigning 30,000 more as part of yet another round of downsizing and reassignment.

Nvidia May Be Prepping a New GTX 1050 Ti Max-Q to Counter Intel, AMD

Nvidia is reportedly readying a new version of the GTX 1050 Ti with a Max-Q spin on the silicon. Is it a move against AMD's just-announced Vega Mobile or a shot across the bow of Intel's Vega-equipped CPUs?

Hasselblad Soups Up Its 100MP H6D With 400MP Multi-Shot Version

Multi-capture-based computational imaging isn't just for smartphones. High-end camera maker Hasselblad's new multi-shot version of its flagship H6D provides improved color and resolution using several images combined in-camera.

Top 10 Cars and Trucks of the 2018 Detroit Auto Show

Detroit celebrates the pickup truck with 3 major intros. Plus SUVs, a handful of new cars, and Nissan's amazing concept crossover.