Why 110-Degree Temps Are Normal for AMD’s Radeon 5700, 5700 XT

Why 110-Degree Temps Are Normal for AMD’s Radeon 5700, 5700 XT

AMD has published a blog post discussing how temperatures and thermals are calculated on its Navi GPUs. There has been some concern in the enthusiast community about the temperatures posted by reference cards, given that these GPUs can report thermal junction temps of up to 110 degrees Celsius. This is substantially hotter than the old temperature of 95 C, which used to be treated as a thermal trip point.

Beginning with Radeon VII, AMD made significant changes to how it measures temperature across the GPU die. In the past, AMD writes, “the GPU core temperature was read by a single sensor that was placed in the vicinity of the legacy thermal diode.” That single reading was used to make decisions governing the GPUs voltage and operating frequency. Radeon VII and now Navi do things differently. Instead of deploying a single sensor, they use a network of sensor data gathered from across the GPU. AMD has deployed the same AVFS (Adaptive Voltage and Frequency Scaling) strategy that it uses for Ryzen to maximize performance of its GPUs.

AVFS deploys a network of on-die sensors across the entire chip rather than relying on a single point of measurement. Rather than calibrating voltages and frequencies at the factory and preprogramming a series of defined voltage and frequency steps that all CPUs must achieve, AVFS dynamically measures and delivers the voltage required for each individual CPU to hit its desired clock frequencies. This allows for finer-grained power management across the CPU, improving both performance and power efficiency across a range of targets.

AMD provides a pair of graphs to illustrate the difference between its Vega 64 and earlier measurement system and how it calibrates voltage on the 5700 XT today. The old discrete state method is shown below:

Why 110-Degree Temps Are Normal for AMD’s Radeon 5700, 5700 XT

Now, compare that against the frequency/voltage curve for the 5700 XT.

Why 110-Degree Temps Are Normal for AMD’s Radeon 5700, 5700 XT

The 5700 XT is designed to continue boosting performance until it hits its thermal junction threshold. From the company’s blog post:

Paired with this array of sensors is the ability to identify the ‘hotspot’ across the GPU die. Instead of setting a conservative, ‘worst case’ throttling temperature for the entire die, the Radeon RX 5700 series GPUs will continue to opportunistically and aggressively ramp clocks until any one of the many available sensors hits the ‘hotspot’ or ‘Junction’ temperature of 110 degrees Celsius. Operating at up to 110C Junction Temperature during typical gaming usage is expected and within spec. This enables the Radeon RX 5700 series GPUs to offer much higher performance and clocks out of the box, while maintaining acoustic and reliability targets.

There’s a certain knee-jerk “I don’t want 110-degree anything in my case!” reaction from enthusiasts that’s both perfectly understandable and somewhat misguided. There’s an unconscious underlying assumption that 110 degrees Celsius represents a dangerous temperature (it doesn’t) or an extremely loud cooler. The 5700 XT and 5700 are much quieter than Vega 64, but if that’s still too loud, third-party cards are starting to hit the market. Companies like Asus were able to build coolers that handled the R9 290X beautifully, so the 5700 XT should be tamable as well.

Higher temperatures are partially an artifact of better measurement. They’re also a reality of advanced silicon manufacturing nodes. Our ability to pack transistors closer together has outstripped our ability to reduce their power consumption by cutting operating voltages. As a result, increasing transistor density increases hot spot formation and higher peak temperatures. AVFS helps mitigate this tendency by ensuring that operating voltage is precisely mapped to frequency, but it can’t fix the fact that AMD has packed more transistors into a smaller space, leading to higher thermal density.

Higher temperatures are not an intrinsic reason to be concerned about a product provided the manufacturer certifies that this is expected behavior. When I got into computing, a CPU temperature of 50 C (measured via in-socket thermistor) was considered extremely high. Today, Intel and AMD build silicon that can operate reliably at 95C or above for years at a time.

Continue reading

AMD Radeon 6700 XT vs. 5700 XT: Putting RDNA2 to the Test
AMD Radeon 6700 XT vs. 5700 XT: Putting RDNA2 to the Test

AMD's 6700 XT offers a rare opportunity to investigate efficiency and performance gains between two GPU generations using a near-identical iteration of both cores. We compare the 5700 XT and 6700 XT clock-for-clock to measure IPC, power consumption, and generational improvements.

AMD’s New 5700G, 5600G APUs Offer Solid Gaming Results, Plug Holes in Ryzen Lineup
AMD’s New 5700G, 5600G APUs Offer Solid Gaming Results, Plug Holes in Ryzen Lineup

The Ryzen 7 5700G and Ryzen 5 5600G are the best chips on the market for anyone who needs a new GPU and can't afford a discrete card.

Biostar Lists PCIe 4.0, DDR4-4000, 3x M.2 Slots for AMD X570 Racing GT8 Motherboard
Biostar Lists PCIe 4.0, DDR4-4000, 3x M.2 Slots for AMD X570 Racing GT8 Motherboard

A new Biostar leak — or inadvertent disclosure — highlights the features arriving with AMD's X570 chipset next month. PCIe 4.0, faster RAM clocks, and multiple M.2 slots, on this board at least, are all on tap.

AMD’s X570 Chipset Isn’t Fully Backwards Compatible, A320 Won’t Support Ryzen 3000
AMD’s X570 Chipset Isn’t Fully Backwards Compatible, A320 Won’t Support Ryzen 3000

AMD's X570 chipset won't be backwards-compatible with first-gen Ryzen, but B450 and X470 motherboards will retain full support for both first-gen and third-gen chips.