New Study Proposes Warp Drive That Might Actually Work

New Study Proposes Warp Drive That Might Actually Work

Let’s say you want to visit Proxima Centauri, which is the closest alien solar system. It’s four light-years away, which works out to trillions of kilometers, or miles, or leagues, or whatever — in the trillions, it doesn’t really matter. It’s very, very far away. It would take millennia to reach Proxima Centauri with current technology, but if you can move faster than light, you could be there in no time. The problem is physics: General relativity says that nothing can go faster than light, a claim that has thus far held up to scientific scrutiny.

In 1994 theoretical physicist Miguel Alcubierre proposed a model for a warp drive vessel that didn’t violate the laws of the universe, but it required exotic negative energy that we can’t produce (it may not even be possible). A new paper from physicists Alexey Bobrick and Gianni Martire started making the rounds late last year, claiming that a physical warp drive may indeed be possible. That paper has now been peer-reviewed and published in the journal Classical and Quantum Gravity.

New Study Proposes Warp Drive That Might Actually Work

Unlike the Alcubierre Drive, the Bobrick-Martire version doesn’t require unfathomable amounts of negative energy. The paper doesn’t describe a vessel but rather a bubble of spacetime that could surround a vessel, a person, or anything else. The bubble (above) can behave however it likes, including accelerating to speeds faster than light. At least, that’s how it would look to an outside observer. To anyone inside the bubble, the laws of physics would remain intact as the “passenger area” consists of completely flat spacetime. Physicist Sabine Hossenfelder (below) broke the paper down when it first began circulating a few months ago.

There are still problems to work out here, so don’t start packing for your space adventure quite yet. We don’t know how to make a spacetime bubble. The matter and energy distribution in such a structure are still a mystery. Even if we could make such an object, we’d have to find the right geometry to accelerate it efficiently. Something as small as the way people are sitting inside a warp bubble could change the amount of energy required.

The important thing is that the Bobrick-Martire Drive gives us a stronger mathematical basis for studying the possibility of FTL travel. Physicists who are adept at sniffing out silly space travel hypotheses have given this paper their stamp of approval, and it will no doubt spur others to add their two cents. In Star Trek, they didn’t develop warp drive until 2063. We’ve got some time yet.

Continue reading

Hubble Examines 16 Psyche, the Asteroid Worth $10,000 Quadrillion
Hubble Examines 16 Psyche, the Asteroid Worth $10,000 Quadrillion

Researchers just finished an ultraviolet survey of 16 Psyche, the ultra-valuable asteroid NASA plans to visit in 2026.

How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips
How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips

Ever been curious how L1 and L2 cache work? We're glad you asked. Here, we deep dive into the structure and nature of one of computing's most fundamental designs and innovations.

How Do SSDs Work?
How Do SSDs Work?

Ever wondered how SSDs read and write data, or what determines their performance? Our tech explainer has you covered.

The Worst CPUs Ever Made
The Worst CPUs Ever Made

Most of the time at wfoojjaec, we celebrate the best of technology. Today, we're hailing the worst.