Dark Matter Could Solve the Mystery of Supermassive Black Hole Formation

Dark Matter Could Solve the Mystery of Supermassive Black Hole Formation

New cosmological research from the University of California Riverside connects two of the universe’s most perplexing phenomena: supermassive black holes and dark matter. According to physicist and astronomer Hai-Bo Yu, dark matter could be the key to understanding how enormous black holes formed in the early universe. This work is all based on simulations, but we might have the means to verify Yu’s work experimentally before long.

Supermassive black holes can have millions or billions of times more mass than the Sun. It is believed that most large galaxies have a supermassive black hole in their centers. The one in the Milky Way is called Sagittarius A* (pronounced “Sagittarius A Star”). Scientists famously imaged the supermassive black hole at the center of galaxy M87 in 2019 (see above).

As scientists peer deeper in the universe, they also look further back in time. One surprising feature of the universe during its younger eons is the presence of supermassive black holes. The origin of these enormous collapsed stars is still murky, and one of the most perplexing aspects is how they existed in the early universe at all. The initial “seed” black hole would need to be much larger than the average black hole these days. Alternatively, those early singularities could have grown much faster than they do today.

Dark Matter Could Solve the Mystery of Supermassive Black Hole Formation

Dark matter is a mystery of its own because it does not interact with normal matter in any way except for gravitation. We can observe the effects of dark matter on normal matter, even if we can’t see it. For example, the halo of dark matter that surrounds most, if not all, galaxies in the modern universe. The simulation created by Yu’s team starts with a similar halo of dark matter with one important distinction: Although the simulated halo cannot interact with normal matter, it can interact with other dark matter.

Under these conditions, the study claims that dark matter that can interact with itself would transfer energy between particles, causing friction and reducing angular momentum. Eventually, these forces cause the cloud to collapse and form a large seed black hole. According to Yu, this property would explain what we see in very old black hole populations. To know for sure, we’d need to observe dimmer celestial objects from the first few billion years of the universe. That’s beyond our current capabilities. Luckily, upcoming instruments like the James Webb Space Telescope should be able to do just that. NASA is currently hoping to get the Webb telescope into space by the end of the year.

Continue reading

Astronomers Track Down Mysterious ‘Guest Star’
Astronomers Track Down Mysterious ‘Guest Star’

An international team of experts has tracked down the identity of the last unaccounted-for supernova of the last thousand years and discovered that it's now a strange nebula surrounding a zombie star.

New Simulation Sheds Light on the Sun’s Mysterious Cometary Cloud
New Simulation Sheds Light on the Sun’s Mysterious Cometary Cloud

The sheath of comets surrounding our solar system is still theoretical, but it matches the available evidence. A new simulation from researchers at Leiden University in the Netherlands models the cloud in unprecedented detail.

More Mysterious Fast Radio Bursts Detected, With Possible Answer in Sight
More Mysterious Fast Radio Bursts Detected, With Possible Answer in Sight

These anomalous pulses of energy were discovered in 2007, and a new data set covering hundreds of FRBs is being made available. This could be the advancement that helps us understand FRBs once and for all.

Mysterious Space Object Could Be Record-Breaking Comet
Mysterious Space Object Could Be Record-Breaking Comet

The outer solar system is littered with big chunks of rock and ice, but rarely do their orbits bring them close enough to Earth for us to get a good look. And then there's 2014 UN271, an approaching object that astronomers believe to be a huge comet on a million-year orbit around the sun.