Study Identifies Which Parts of an Asteroid Make It to Earth’s Surface
Asteroids are seen as an important source of information about the origins of our solar system. The composition of these objects can remain unchanged for billions of years, meanwhile weathering, oxygen exposure, and biological processes have altered everything on Earth. That’s why both NASA and the Japanese Space Agency (JAXA) are working to return asteroid samples to Earth for study. Understanding what parts of an asteroid become Earth-bound meteorites could also help with that effort.
The study focused on an object that impacted Earth 14 years ago. The asteroid, known as 2008 TC3 was about six meters in diameter before it entered the atmosphere over the Nubian Desert of Sudan. Like most asteroids, the intense heat generated by the thickening atmosphere melted the structure and caused it to break apart into a shower of meteorites. The University of Khartoum assisted in collecting the meteorites, which were scattered over a 7 x 30 square kilometer area.
After SETI researchers noted that larger pieces of the object were spread more widely than smaller ones, they reached out to NASA’s Asteroid Threat Assessment Project (ATAP) at Ames. Unlike most asteroids, 2008 TC3 was spotted 20 hours before it hit and was tracked all the way down. Thus, it was an ideal candidate on which to base a model.
According to ATAP’s Darrel Robertson, a hydrodynamic model of 2008 TC3 showed that it generated a near-vacuum wake in the atmosphere as it fell. Fragments from the sides fell off first and were sucked into the wake. After that, the front began to collapse, as did the top. Because of the shape of 2008 TC3, the back and bottom sections were the last to come apart. As they were unencumbered by surrounding material, they were flung farther afield when the structure finally fractured. The widely scattered large pieces are, therefore, from this final collapse.
The researchers found various types of meteorites in the debris, all spread out randomly. Given the results of the simulation, that suggests the original object had these materials randomly distributed as well. The results from this study could help scientists understand other meteorite falls, as well as shed light on our early exploration of intact space rocks.
Continue reading
New Study Suggests Dark Matter Doesn’t Exist
Most scientists currently believe the iron grip of gravity is augmented by dark matter, an invisible material that makes up about 85 percent of the universe. A new study makes the case for an alternative model, one in which dark matter doesn't exist and gravity works a little differently than we thought.
Google Shuts Down Stadia Games Studio, Plans to License Tech
Google says this is just part of a larger strategy to strengthen its Stadia partnerships, but this feels like the beginning of the end for Google's game streaming platform.
Scientists Can Finally Study Einsteinium 69 Years After Its Discovery
In the remnants of atomic explosions, scientists found never-before-seen elements like einsteinium. Now, almost 70 years after its discovery, scientists have collected enough einsteinium to conduct some basic analysis.
Samsung Stuffs 1.2TFLOP AI Processor Into HBM2 to Boost Efficiency, Speed
Samsung has developed a new type of processor-in-memory, built around HBM2. It's a new achievement for AI offloading and could boost performance by up to 2x while cutting power consumption 71 percent.