Робоча рука OpenAI навчає, як працювати без людських прикладів

Робоча рука OpenAI навчає, як працювати без людських прикладів

Ви забираєте речі так часто протягом дня, що дія виглядає просто. Однак це лише кінцевий результат мережі нервів, сухожиль і м'язів, які ви відточили все своє життя. Створення робота, який може підібрати речі з тією ж надійністю, виявилося складним, і навіть невеликі зміни можуть зробити ретельний робот рукою всі великі пальці. Компанія, що називається OpenAI, стверджує, що вона розробила робочу руку, яка захоплює об'єкти більш людським способом, і це не повинно було навчати людей - це все навчилося самостійно.

За все ваше життя, ваш мозок навчився збирати різні предмети. На свідому рівні немає ніякої різниці між збиранням дерев'яного блоку або яблука. Ви просто робите це. Переклад людських рухів у машину буде без потреби ускладнений. Отже, OpenAI вирішила пропустити людський елемент взагалі. Вони дозволяють роботі руку спробувати і знов і знову в симуляції, поки він повільно навчився, як підібрати різні об'єкти.

Симульована робота руки не повинні працювати в режимі реального часу, так що дослідники змогли імітувати близько 100 років проб і помилок протягом приблизно 50 годин. Для цього сталося декілька серйозних обчислювальних пристроїв: 6144 процесорів та 8 графічних графічних процесорів, які працювали на етапі навчання. OpenAI називає цю систему Dactyl, і вона виходить за межі симуляції.

З Dactyl вимкнений на руках фізичного робота, він здатний до надзвичайно людських рухів. Щось ми вважаємо само собою зрозумілим, як крутити об'єкт навколо, щоб дивитися на інший бік, це утомливо для більшості роботів. Dactyl це може з легкістю зробити, але він має передові апаратні засоби, щоб допомогти. Тінь Левчаста рука має 24 ступені свободи в порівнянні з 7 для більшості роботів зброї. Робот знає позицію кожного пальця, а також подає три кути камери, щоб допомогти йому орієнтувати об'єкт.

Важливо, що ця система не застряє жодним типом об'єкта. Він може захоплювати і маніпулювати будь-яким, що входить в його руку. Це називається "узагальнення", і це є важливим аспектом робототехніки, коли ми інтегруємо машини в наше життя. Ви не хочете, щоб тренувати робота, щоб робити все, що може знадобитися протягом дня. В ідеалі, він повинен мати можливість визначити щось, якщо він схожий на завдання, яке вже виконано. Наприклад, якщо ваш ботанік-робот може вранці висипати апельсиновий сік, він повинен мати можливість висувати схову ввечері, не довідаючись точно, як це робити.

Дактил ще не збирається пити вам жодних напоїв, але, можливо, коли-небудь.

Читати далі

NVIDIA розкриває процесор глибокого навчання Грейс для суперкомп'ютерних додатків
NVIDIA розкриває процесор глибокого навчання Грейс для суперкомп'ютерних додатків

NVIDIA вже користується придбанням руки з величезним потужним новим комбінацією CPU-Plus-GPU, що заявляє, що він прискорить навчання великих машин-навчальних моделей до 10 років.

Що робити, якщо ми навчаємо роботів tradigrade двоступеневий?
Що робити, якщо ми навчаємо роботів tradigrade двоступеневий?

Тепер ти теж може спостерігати за улюбленим улюбленим маленьким простором. Його крихітний, крихітний паз.

Новий AI записує комп'ютерний код: все ще не Skynet, але це навчання
Новий AI записує комп'ютерний код: все ще не Skynet, але це навчання

Особливість зараз знаходиться в приватній бета-версії. Але ви все ще повинні піклуватися про помилки синтаксису.

Google забороняє навчання DeepFake на Colab
Google забороняє навчання DeepFake на Colab

Google тихо прийняв рішення заборонити користувачам створювати Deepfaks на своїй колораторній обчислювальній службі.