NASA, MIT Design Hollow Morphing Airplane Wing

The airplanes of the future could have wings that look nothing like the ones we have today, based on a new project from NASA and MIT. A team of engineers developed a new kind of wing composed of hundreds of individual pieces that could be lighter and more energy-efficient.
The approach demonstrated by NASA and MIT would allow the entire surface of the wing to deform because it uses a mix of stiff and flexible repeating segments. The tiny subassemblies are bolted together in an open framework and covered with a thin layer of polymer.
Under the surface coating, the redesigned wing is mostly empty space, combining the stiffness of rubber-like polymers with the low density of an aerogel. Naturally, that makes it much lighter than current wing designs, even those made with advanced lightweight composites.
The process of takeoff, cruising, and landing a plane all require different wing configurations. The wings of current planes require many different components to create controllable surfaces like ailerons to adjust the roll and pitch. That means if you want a wing to do something in flight, you need to design it with that in mind from the start — it’s not optimized for any of those three situations. The new wing design could change its shape to create the best shape for each phase of flight.
It should be possible to create a motorized system that allows pilots to change the wing shape on command for takeoff, cruising, and landing, but the team took the design a step further by devising a system that automatically changes shape based on the current aerodynamic conditions. They say this could lead to substantial efficiency gains.

The team demonstrated the effectiveness of the design by building a prototype wing about five meters long — that’s similar to the wing on a small single-seat aircraft. Researchers used injection molding with polyethylene resin to produce the individual subunits, taking a mere 17 seconds to pump out each one. When assembled, the wing has a density of 5.6 kilograms per cubic meter compared with more than 1,500 kilograms per cubic meter for rubber, which has the same stiffness.
The wing performed even better than expected in NASA’s wind tunnel at Langley Research Center. The designers are hopeful it can be scaled up to fly on real aircraft in the near future.
Continue reading

Protect Your Online Privacy With the 5 Best VPNs
Investing in a VPN is a smart choice right now, but the options are vast. To help narrow things down a bit, we've rounded up five of our very favorite consumer services.

RISC-V Tiptoes Towards Mainstream With SiFive Dev Board, High-Performance CPU
RISC V continues to make inroads across the market, this time with a cheaper and more fully-featured test motherboard.

The PlayStation 5 Will Only Be Available Online for Launch Day
The PlayStation 5 isn't going to be available in stores on launch day, and if you want to pick up an M.2 SSD to expand its storage, you'll have some time to figure out that purchase.

ARMing for War: New Cortex-A78C Will Challenge x86 in the Laptop Market
ARM took another step towards challenging x86 in its own right with the debut of the Cortex-A78C this week. The new chip packs up to eight "big" CPU cores and up to an 8MB L3 cache.