Scientists Create Model of Ring Around Dwarf Planet Haumea
The dwarf planet Haumea orbits the sun in the deep, dark reaches of the outer solar system. Astronomers spotted this object in 2004, and it helped usher in the formal definition a “dwarf planet,” resulting in the demotion of Pluto. The longer astronomers observe Haumea, the more interesting it becomes. Not only does this object have two moons, but it also has a ring system. Haumea is too distant to observe the rings directly, but researchers with the São Paulo Research Foundation have now worked out the characteristics of Haumea’s rings with a simulation.
Haumea is 43 times more distant from the Sun than Earth, so direct observation is difficult. From Earth, astronomers can make out Haumea itself and the moons known as Hiʻiaka and Namaka (detected in 2005). Scientists speculate that the Haumea system is what’s left after a collision between two larger trans-Neptunian objects (TNOs). Haumea has a diameter of 904 miles (1,456 kilometers), but it’s an oblong object twice as wide as it is tall. It’s currently the third largest known TNO after Eris and Pluto.
That was all enough to make Haumea an interesting TNO, but then a chance orbital encounter in 2017 made Haumea downright fascinating. Haumea passed in front of a bright star called URAT1 533-182543. This process, known as an occultation, allowed astronomers to measure Haumea’s size, shape, and density via the dips in light from the star. It’s a process similar to the way we detect exoplanets. In addition to Haumea’s characteristics, the team also realized it had rings.
Haumea is too distant to image subtle features like this directly, but the Brazilian team used a computational model to work out the mechanics of Haumea’s rings. From the occultation data, we know that Haumea and the rings have an orbital resonance of 1:3. So, Haumea rotates three times for every orbit of ring particles. The simulation shows that the ring can’t be perfectly circular if that’s true.
The model devised at the São Paulo Research Foundation shows the 1:3 arrangement would have resulted in highly eccentric orbits. The model did find islands of stability at lower trajectories (less eccentric) that do match observations. Therefore, the team concludes that Haumea’s rings don’t have a true 1:3 resonance, but they orbit periodically on different paths that average out to be close to the observed 1:3 resonance. Clearly, we have a lot still to learn about ring systems around dwarf planets.
Continue reading
NASA’s OSIRIS-REx Asteroid Sample Is Leaking into Space
NASA reports the probe grabbed so much regolith from the asteroid that it's leaking out of the collector. The team is now working to determine how best to keep the precious cargo from escaping.
Intel’s Raja Koduri to Present at Samsung Foundry’s Upcoming Conference
Intel's Raja Koduri will speak at a Samsung foundry event this week — and that's not something that would happen if Intel didn't have something to say.
AMD Smashes Revenue Records as Zen 3, Xbox Series X, PS5 Ramp Up
AMD's Q3 2020 results are in, and the results are excellent for the company, in every particular.
Protect Your Online Privacy With the 5 Best VPNs
Investing in a VPN is a smart choice right now, but the options are vast. To help narrow things down a bit, we've rounded up five of our very favorite consumer services.