Nvidia Unveils Conversational AI Tech for Smarter Bots

Now that nearly every possible mobile device and appliance has either adopted or at least experimented with voice control, conversational AI is quickly becoming the new frontier. Instead of handling one query and providing one response or action, conversational AI aims to provide a realtime interactive system that can span multiple questions, answers, and comments. While the fundamental building blocks of conversational AI, like BERT and RoBERTa for language modeling, are similar to those for one-shot speech recognition, the concept comes with additional performance requirements for training, inferencing, and model size. Today, Nvidia released and open-sourced three technologies designed to address those issues.
Faster Training of BERT

Faster Language Model Inferencing
For natural conversations, the industry benchmark is 10ms response time. Understanding the query and coming up with a suggested reply is just one part of the process, so it needs to take less than 10ms. By optimizing BERT using TensorRT 5.1, Nvidia has it inferencing in 2.2ms on an Nvidia T4. What’s cool is that a T4 is actually within the reach of just about any serious project. I used them in the Google Compute Cloud for my text generation system. A 4-vCPU virtual server with a T4 rented for just over $1/hour when I did the project.
Support for Even Larger Models
Nvidia, though, has come up with a way to allow multiple GPUs to work on the language modeling task in parallel. Like with the other announcements today, they have open-sourced the code to make it happen. I’ll be really curious if the technique is specific to language models or can be applied to allow multiple-GPU training for other classes of neural networks.
Along with these developments and releasing the code on GitHub, Nvidia announced that they will be partnering with Microsoft to improve Bing search results, as well as with Clinc on voice agents, Passage AI on chatbots, and RecordSure on conversational analytics.
Continue reading

MSI’s Nvidia RTX 3070 Gaming X Trio Review: 2080 Ti Performance, Pascal Pricing
Nvidia's new RTX 3070 is a fabulous GPU at a good price, and the MSI RTX 3070 Gaming X Trio shows it off well.

Nvidia Will Mimic AMD’s Smart Access Memory on Ampere: Report
AMD's Smart Access Memory hasn't even shipped yet, but Nvidia claims it can duplicate the feature.

Nvidia Unveils Ampere A100 80GB GPU With 2TB/s of Memory Bandwidth
Nvidia announced an 80GB Ampere A100 GPU this week, for AI software developers who really need some room to stretch their legs.

Nvidia, Google to Support Cloud Gaming on iPhone Via Web Apps
Both Nvidia and Google have announced iOS support for their respective cloud gaming platforms via progressive web applications. Apple can't block that.