NASA Spends $50 Million to Develop Next-Gen Processor for Space Exploration

NASA Spends $50 Million to Develop Next-Gen Processor for Space Exploration

NASA has been using the same spaceflight computers for almost 30 years, but it won’t be much longer. The agency has awarded a $50 million contract to Arizona-based Microchip Technology Inc. to “architect, design, and deliver” a next-generation space-optimized processor. NASA expects the new chip, which will be used in future lunar and planetary missions, will be 100 times faster than the chips currently in use.

In an interview we conducted with Perseverance rover engineer Adam Steltzner, he told us the chip powering the robot was no faster than the CPU in a late 90s Mac computer — the phone in your pocket is an order of magnitude more powerful. However, you can’t just slap the latest Intel CPU in a spacecraft and call it a day. Space is a harsh environment with extreme temperatures and damaging radiation. Regular computer hardware tends not to last very long. The Ingenuity Mars helicopter is one notable exception. It runs on a Qualcomm smartphone SoC, and despite NASA’s low expectations, it’s still going strong on Mars.

Still, for mission-critical hardware, NASA needs the most robust designs it can get. That’s why Microchip Technology is designing a new chip known as the High-Performance Spaceflight Computing (HPSC) processor. This will mean a big improvement in the capabilities of future NASA missions, and not just in raw power. Microchip Technology promises “comprehensive Ethernet networking, advanced artificial intelligence/machine learning processing, and connectivity support.” At the same time, the processor will have the best fault tolerance, radiation hardening, and security architecture possible.

NASA Spends $50 Million to Develop Next-Gen Processor for Space Exploration

NASA began the bidding process for its new spaceflight processor last year. It specified that the new chip is capable of efficiently handling different workloads. Current spaceflight processors are designed to handle the most computationally intensive part of the mission; for example, the rocket sled landing sequence employed by Curiosity and Perseverance. However, this means the system has more power than it needs for day-to-day activities, and that loss of efficiency can be a big problem when power is in short supply. Microchip Technology says the HPSC processor will be able to scale performance up and down as needed and will even be able to completely shut off certain functionality to save power.

Microchip Technology has a goal of completing the HPSC processor within three years. The $50 million fixed-cost contract could end up being a steal, too. NASA used the last designs for decades, and this one could be similarly long-lived as the agency gears up for a new era of planetary exploration. Other government agencies could also find it useful in applications with similarly stringent requirements.

Continue reading

NASA’s OSIRIS-REx Asteroid Sample Is Leaking into Space
NASA’s OSIRIS-REx Asteroid Sample Is Leaking into Space

NASA reports the probe grabbed so much regolith from the asteroid that it's leaking out of the collector. The team is now working to determine how best to keep the precious cargo from escaping.

NASA: Asteroid Could Still Hit Earth in 2068
NASA: Asteroid Could Still Hit Earth in 2068

This skyscraper-sized asteroid might still hit Earth in 2068, according to a new analysis from the University of Hawaii and NASA’s Jet Propulsion Laboratory.

NASA Created a Collection of Spooky Space Sounds for Halloween
NASA Created a Collection of Spooky Space Sounds for Halloween

NASA's latest data release turns signals from beyond Earth into spooky sounds that are sure to send a chill up your spine.

NASA Discovers Vital Organic Molecule on Titan
NASA Discovers Vital Organic Molecule on Titan

In the latest analysis, researchers from NASA have identified an important, highly reactive organic molecule in Titan's atmosphere. Its presence suggests the moon could support chemical processes that we usually associate with life.